상단으로 이동
상단으로 이동
회원리뷰[0)]

파이토치로 배우는 자연어 처리

저자 | 델립 라오 외 출판사 | 한빛미디어
ISBN : 9791162244333   |  발행일 : 2021-06-01  |  296
  • 정가 26,000원
    판매가 23,400 (10% 할인)
  • 적립포인트 1,300 적립 [5% 적립]
  • 무이자할부 1월 무이자 할부
    배송비 무료배송 (20,000원 이상 구매시 배송비 무료)
  • 스프링분철
IT/베스트셀러 > 컴퓨터/IT도서


도서소개

쉽고 빠르게 익히는 자연어 처리 입문 가이드북
자연어 처리(NLP)는 인공지능이 지닌 무한한 능력을 이용해 애플 시리, 아마존 알렉사, 구글 번역 등과 같은 제품을 탄생시켰다. 복잡하고 어렵게만 여겨지던 자연어 처리는 파이썬 기반 딥러닝 라이브러리인 파이토치를 통해 딥러닝을 처음 접하는 개발자 및 데이터 과학자도 손쉽게 구현할 수 있게 되었다.

이 책은 자연어 처리 및 딥러닝 알고리즘 학습에 필요한 내용을 다룬다. 또한 파이토치를 사용해 자연어 처리 과정에서 직면할 수 있는 문제와 다양한 텍스트를 표현하는 애플리케이션을 구축하는 방법을 보여준다. 딥러닝 및 자연어 처리 기초부터 난도 시퀀스 모델링까지 쉽고 빠르게 익혀보세요.

수식 없이 예제를 통해 배우는 자연어 처리 & 딥러닝
자연어 처리와 딥러닝은 급격히 성장하고 있는 분야입니다. 특히 머신러닝, 딥러닝은 지적인 과학이라기보다 경험적인 학문입니다. 이 책은 자연어 처리(NLP)와 딥러닝을 처음 접하는 독자를 위해 두 분야에서 중요하면서 기본이 되는 내용을 주로 다룹니다. 복잡한 수식과 이론보다는 구현에 중점을 두어 딥러닝과 자연어 처리를 학습할 수 있으며, 모든 예제는 구글 코랩에서 파이토치를 기반으로 실습할 수 있습니다. 실습 예제는 딥러닝과 자연어 처리를 학습하고 이해하는 데 꼭 필요한 내용을 위주로 구성되었습니다. 책을 통해 독자가 기초적인 토대를 다지고 이 분야의 가능성을 엿볼 수 있기를 바랍니다. 각 장의 친절한 엔드 투 엔드 예제가 여러분을 이런 경험으로 안내할 것입니다.

주요 내용
● 계산 그래프 및 지도 학습 이해하기
● 신경망을 구축하는 기본적인 방법
● 자연어 처리의 기본 개념 학습하기
● 자연어 처리를 위한 피드-포워드 신경망
● 임베딩을 사용해 단어, 문장, 문서 및 기타 기능 나타내기
● 자연어 처리를 위한 시퀀스 데이터 모델링 - 초급, 중급, 고급
● 시퀀스 예측 및 시퀀스-투-시퀀스 모델 확장
● 카카오브레인에서 만든 자연어 처리 라이브러리 뽀로로(pororo) 살펴보기(한국어판 부록)

도서목차

1장_소개
1.1 지도 학습
1.2 샘플과 타깃의 인코딩
1.3 계산 그래프
1.4 파이토치 기초
1.5 연습문제
1.6 요약
1.7 참고 문헌

2장_NLP 기술 빠르게 훑어보기
2.1 말뭉치, 토큰, 타입
2.2 유니그램, 바이그램, 트라이그램, …, n-그램
2.3 표제어와 어간
2.4 문장과 문서 분류하기
2.5 단어 분류하기: 품사 태깅
2.6 청크 나누기와 개체명 인식
2.7 문장 구조
2.8 단어 의미와 의미론
2.9 요약
2.10 참고 문헌

3장_신경망의 기본 구성 요소
3.1 퍼셉트론: 가장 간단한 신경망
3.2 활성화 함수
3.3 손실 함수
3.4 지도 학습 훈련 알아보기
3.5 부가적인 훈련 개념
3.6 예제: 레스토랑 리뷰 감성 분류하기
3.7 요약
3.8 참고 문헌

4장_자연어 처리를 위한 피드 포워드 신경망
4.1 다층 퍼셉트론
4.2 예제: MLP로 성씨 분류하기
4.3 합성곱 신경망
4.4 예제: CNN으로 성씨 분류하기
4.5 CNN에 관한 추가 내용
4.6 요약
4.7 참고 문헌

5장_단어와 타입 임베딩
5.1 임베딩을 배우는 이유
5.2 예제: CBOW 임베딩 학습하기
5.3 예제: 문서 분류에 사전 훈련된 임베딩을 사용한 전이 학습
5.4 요약
5.5 참고 문헌

6장_자연어 처리를 위한 시퀀스 모델링 - 초급
6.1 순환 신경망 소개
6.2 예제: 문자 RNN으로 성씨 국적 분류하기
6.3 요약
6.4 참고 문헌

7장_자연어 처리를 위한 시퀀스 모델링 - 중급
7.1 엘만 RNN의 문제점
7.2 엘만 RNN의 문제 해결책: 게이팅
7.3 예제: 문자 RNN으로 성씨 생성하기
7.4 시퀀스 모델 훈련 노하우
7.5 참조 문헌

8장_자연어 처리를 위한 시퀀스 모델링 - 고급
8.1 시퀀스-투-시퀀스 모델, 인코더-디코더 모델, 조건부 생성
8.2 강력한 시퀀스 모델링: 양방향 순환 모델
8.3 강력한 시퀀스 모델링: 어텐션
8.4 시퀀스 생성 모델 평가
8.5 예제: 신경망 기계 번역
8.6 요약

9장_고전 모델, 최신 모델, 더 배울 것들
9.1 지금까지 배운 내용
9.2 전통적인 NLP 주제
9.3 최신 NLP 모델
9.4 NLP 시스템을 위한 디자인 패턴
9.5 더 배울 것들
9.6 참고 문헌

해시태그

#파이토치로 #배우는 #자연어 #처리

도서 리뷰작성!

평점
답변상태 문의답변 작성자 작성일

도서 문의작성!

배송 - 월요일~토요일 오전9시 이전에 입금 확인 된 주문은 다음날 배송받으실 수 있습니다.
- 토요일 발송분은 오전9시 이전 주문에 한하여 월요일 수령 가능 합니다.
(일부 제작상품 및 재고부족 도서 제외)
- 재고가 부족한 일부 상품의 경우 1~3일 정도 배송이 지연될 수 있습니다.
교환/반품 방법 1:1 문의 글 등록, 고객만족센터 (1544-1356) 전화 후 교환/반품 문의하시면 됩니다.
교환/반품 가능기간 출고 완료 후 7일 이내에 교환/반품/환불이 가능합니다.
교환/반품 비용 고객님 변심에 의한 반품, 환불, 교환 시 택배비는 본인 부담입니다.
교환/반품 불가사유 - 상담원과의 상담 없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
- 상품이 훼손된 경우 반품 및 교환, 환불이 불가합니다.
- 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한됩니다.
서브노트, 스프링 분철 교재 등은 교환이나 반품이 불가합니다.
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로
안내해드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에
관한 사항은 소비자분쟁해결 기준 (공정거래위원회고시)에 준하여 처리됨
- 대금환불 및 환불지연에 따른 배상금 지급 조건, 절차등은 전자상거래 등에서의
소비자 보호에 관한 법률에 따라 처리됨