상단으로 이동
상단으로 이동
회원리뷰[0)]

파이썬으로 배우는 포트폴리오

저자 | 곽승주 출판사 | 길벗
ISBN : 9791165214869   |  발행일 : 2021-03-15  |  336
  • 정가 26,000원
    판매가 23,400 (10% 할인)
  • 적립포인트 1,300 적립 [5% 적립]
  • 무이자할부 1월 무이자 할부
    배송비 무료배송 (20,000원 이상 구매시 배송비 무료)
  • 스프링분철
IT/베스트셀러 > 컴퓨터/IT도서


도서소개

알아두면 피가 되고 살이 되는 투자의 기초

포트폴리오, 자산배분과 분산 투자를 배우자
'나무만 보고 숲은 보지 못한다'라는 말이 있다. 투자 종목이 나무라면 포트폴리오는 숲이다. 나무를 잘 키운다 해도 한 그루만으로 숲을 만들 수는 없을 것이다. 이 책은 '포트폴리오 이론을 현실에서 활용할 수 있을까?'라는 지적 호기심에서 출발했다. 평균-분산 포트폴리오 이론, 자본자산가격결정모델, 블랙-리터만 모델, 파마-프렌치 3요인 모델의 이론과 수식을 살펴보고 파이썬을 활용해 계산해보자. 자산배분의 중요성을 이해하고, 최적 포트폴리오 계산 방법을 배워보자.

금융의 기초, NPV vs. IRR부터 시작하자
포트폴리오 이론으로 들어가기에 앞서 금융 분야에서 일하거나 투자를 할 때 알아둬야 할 기반 지식을 간단히 다룬다. 필요한 재무 지식(이자율, NPV, IRR, 공분산, 상관계수 등)을 배우면서 기초를 튼튼히 다진 뒤 이후 내용을 학습하자. 개념만 소개하는 것이 아니라 그림, 수식, 파이썬 코드를 충분히 활용하여 지루하지 않고 명확히 설명하고자 했다.

프로그래밍은 필수! 파이썬으로 시작하자
금융과 IT 기술의 접점은 앞으로 더욱 확대될 것이다. 프로그래밍은 누구나 배워서 자신의 분야에 적용할 수 있는 기술이다. 재무 기초 지식을 파이썬 코드로 계산하면서 재무 기초와 파이썬의 기초를 함께 배우자. 포트폴리오 이론을 파이썬 코드로 옮겨 적으며 이론을 더 명확하게 이해하자. 파이썬에서 가장 많이 사용하는 NumPy, MatplotLib, Pandas는 별도로 더 설명하고 사용법도 소개했다.

도서목차

1장 파이썬과 재무 기초 지식
__1.1 파이썬 시작하기
____1.1.1 파이썬 도구의 선택
____1.1.2 구글 코랩
____1.1.3 구글 코랩 시작하기
____1.1.4 파이썬의 여섯 가지 핵심 사항
__1.2 현금흐름, 이자율과 시간 가치
__1.3 NPV와 IRR
____1.3.1 NPV
____1.3.2 IRR
__1.4 수익률 대 수익률
____1.4.1 수익률과 할인율의 개념
____1.4.2 기간 수익률의 평균, 산술평균과 기하평균
____1.4.3 지배원리
__1.5 자주 사용하는 통계량: 기댓값, 분산, 공분산, 상관계수
____1.5.1 평균과 기댓값
____1.5.2 이동평균
____1.5.3 가중(산술)평균
____1.5.4 분산과 표준편차
____1.5.5 정규분포에서 표준편차와 평균
____1.5.6 자유도
____1.5.7 공분산과 상관계수

2장 투자와 자산배분
__2.1 자산배분과 포트폴리오
__2.2 포트폴리오 성과의 결정 요인들
__2.3 포트폴리오 성과 측정 삼총사
____2.3.1 샤프지수
____2.3.2 젠센알파지수
____2.3.3 트레이너지수
____2.3.4 정보비율
____2.3.5 최대 낙폭

3장 평균-분산 포트폴리오 이론
__3.1 포트폴리오의 기대수익률과 위험
____3.1.1 두 개 주식으로 구성된 포트폴리오
____3.1.2 n개 주식으로 만든 포트폴리오
__3.2 최소분산포트폴리오
__3.3 체계적 위험과 비체계적 위험
__3.4 무위험자산과 최적 자산배분
____3.4.1 효율적 포트폴리오
____3.4.2 기대효용과 무차별곡선
____3.4.3 최적 포트폴리오의 선택
____3.4.4 무위험자산+위험자산
____3.4.5 무위험자산+위험자산+효율적 투자선(자본배분선)
____3.4.6 최적 포트폴리오 선택

4장 자본자산가격결정모델
__4.1 기본 가정
____4.1.1 동일한 기대와 시장포트폴리오, 그리고 자본시장선
____4.1.2 포트폴리오 베타
__4.2 증권시장선과 자본시장선
____4.2.1 증권시장선과 자본시장선
____4.2.2 위험프리미엄
__4.3 포트폴리오 최적화
____4.3.1 최적화 패키지 scipy.optimize 알아보기
____4.3.2 간단한 최적화 알아보기
____4.3.3 최적화 알고리즘 SLSQP
____4.3.4 포트폴리오 최적화(최소분산포트폴리오 및 샤프비율)
__4.4 현실에 응용하기

5장 블랙-리터만 모델
__5.1 피셔 블랙과 블랙-리터만 모델
__5.2 간단히 알아보는 베이지안 확률
__5.3 역최적화로 구하는 균형기대수익률
____5.3.1 균형기대수익률(Π)
____5.3.2 위험회피계수(λ)
____5.3.3 자산의 공분산 행렬(Σ)
____5.3.4 자산시가총액 비중(W mkt )
__5.4 투자자 전망
__5.5 블랙-리터만 공식
__5.6 위험조정상수(τ)
__5.7 균형기대수익률과 투자자 전망 결합
__5.8 세 가지 자산을 가정한 예시
__5.9 블랙-리터만 모델 최적화
__5.10 현업에서의 블랙-리터만 모델

6장 파마-프렌치 3요인 모델
__6.1 효율적 시장 가설과 유진 파마
__6.2 베타는 죽었다
__6.3 파마-프렌치 3요인 모델
__6.4 프렌치 교수가 제공하는 요인 데이터
__6.5 파이썬을 이용한 요인 데이터 구하기와 회귀분석
____6.5.1 요인 데이터 구하기
____6.5.2 펀드 수익률과 요인 데이터 회귀분석

7장 금융산업과 머신 러닝
__7.1 머신 러닝 시작하기
__7.2 머신 러닝 맛보기, 선형 회귀
____7.2.1 비용함수와 경사하강법
____7.2.2 K-최근접 이웃 알고리즘
__7.3 K-최근접 이웃 알고리즘을 이용한 회귀
____7.3.1 라이브러리 임포트
____7.3.2 주가지수 데이터 가져오기
____7.3.3 예측변수 설정
____7.3.4 목표변수 설정
____7.3.5 데이터셋 분할
____7.3.6 KNN 모델 설정
____7.3.7 모델을 바탕으로 전략 실행
____7.3.8 샤프비율 계산
__7.4 로지스틱 회귀
____7.4.1 라이브러리 임포트
____7.4.2 데이터 가져오기
____7.4.3 예측변수/독립변수 설정
____7.4.4 목표변수/종속변수 설정
____7.4.5 데이터셋 분할
____7.4.6 로지스틱 회귀 모델의 설정 및 훈련
____7.4.7 클래스 확률 예측
____7.4.8 모델 평가
____7.4.9 매매 전략

8장 Yahoo_fin 패키지를 사용해 재무 데이터 가져오기
__8.1 설치 및 업그레이드
__8.2 stock_info 모듈
____8.2.1 패키지 임포트
____8.2.2 get_analysts_info(ticker)
____8.2.3 get_balance_sheet(ticker)
____8.2.4 get_cash_flow(ticker)
____8.2.5 get_data( )
____8.2.6 get_day_gainers( )
____8.2.7 get_day_losers( )
____8.2.8 get_day_most_active( )
____8.2.9 get_holders(ticker)
____8.2.10 get_live_price(ticker)
____8.2.11 get_quote_table(ticker, dict_result = True)
____8.2.12 get_top_crypto( )
____8.2.13 get_stats(ticker)
____8.2.14 get_stats_valuation(ticker)
____8.2.15 종목 티커 관련 함수
__8.3 재무 정보 가져오기(Yahoo_fin 패키지)
____8.3.1 패키지 임포트
____8.3.2 재무비율 구하기: 주가수익률 비율
____8.3.3 한 번에 여러 종목의 재무비율 구하기
____8.3.4 여러 종목의 기타 통계 구하기
__8.4 재무제표 다루기
____8.4.1 재무상태표 다루기
____8.4.2 손익계산서 다루기
____8.4.3 현금흐름표

부록 파이썬 라이브러리 삼총사
__A.1 수학 및 과학 연산, NumPy와 SciPy
____A.1.1 배열과 행렬 만들기
____A.1.2 배열과 행렬의 속성
____A.1.3 연산
____A.1.4 인덱싱/슬라이싱
____A.1.5 난수 만들기
__A.2 미술 담당, Matplotlib
____A.2.1 차트 도해
____A.2.2 라인 차트
____A.2.3 분산형 차트
____A.2.4 히스토그램
__A.3 데이터 담당, Pandas
____A.3.1 데이터프레임
____A.3.2 데이터프레임 만들기: DataFrame
____A.3.3 데이터프레임 합치기: concat과 merge
____A.3.4 인덱스 새로 만들기: reset_index
____A.3.5 데이터프레임 컬럼 삭제: drop
____A.3.6 컬럼을 행으로 모으기: melt
____A.3.7 정렬하기: sort_values
____A.3.8 쿼리하기: query
____A.3.9 데이터프레임 컬럼명 바꾸기: rename
____A.3.10 중복된 데이터 지우기: drop_duplicates
____A.3.11 데이터프레임 앞부분, 뒷부분 살짝 보기: head, tail

참고문헌
찾아보기

해시태그

#파이썬으로 #배우는 #포트폴리오

도서 리뷰작성!

평점
답변상태 문의답변 작성자 작성일

도서 문의작성!

배송 - 월요일~토요일 오전9시 이전에 입금 확인 된 주문은 다음날 배송받으실 수 있습니다.
- 토요일 발송분은 오전9시 이전 주문에 한하여 월요일 수령 가능 합니다.
(일부 제작상품 및 재고부족 도서 제외)
- 재고가 부족한 일부 상품의 경우 1~3일 정도 배송이 지연될 수 있습니다.
교환/반품 방법 1:1 문의 글 등록, 고객만족센터 (1544-1356) 전화 후 교환/반품 문의하시면 됩니다.
교환/반품 가능기간 출고 완료 후 7일 이내에 교환/반품/환불이 가능합니다.
교환/반품 비용 고객님 변심에 의한 반품, 환불, 교환 시 택배비는 본인 부담입니다.
교환/반품 불가사유 - 상담원과의 상담 없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
- 상품이 훼손된 경우 반품 및 교환, 환불이 불가합니다.
- 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한됩니다.
서브노트, 스프링 분철 교재 등은 교환이나 반품이 불가합니다.
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로
안내해드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에
관한 사항은 소비자분쟁해결 기준 (공정거래위원회고시)에 준하여 처리됨
- 대금환불 및 환불지연에 따른 배상금 지급 조건, 절차등은 전자상거래 등에서의
소비자 보호에 관한 법률에 따라 처리됨