상단으로 이동
상단으로 이동
회원리뷰[0)]

데이터 분석을 위한 머신 러닝 입문

저자 | 하시모토 타이이치 출판사 | 길벗
ISBN : 9791160506013   |  발행일 : 2018-11-05  |  260
  • 정가 22,000원
    판매가 19,800 (10% 할인)
  • 적립포인트 1,100 적립 [5% 적립]
  • 무이자할부 1월 무이자 할부
    배송비 2,500원 (20,000원 이상 구매시 배송비 무료)
  • 스프링분철
IT/베스트셀러 > 컴퓨터/IT도서


도서소개

데이터를 분석해 현재를 알고, 머신 러닝을 이용해 미래를 예측한다!

데이터를 분석하자! 현재를 알 수 있다.
하둡을 중심으로 한 대규모 분산 데이터 처리 환경을 간단히 소개하면서 데이터를 분석하는 데 어떤 기술이 필요한지 알아본다. 또한, 데이터를 수집하는 플루언티드, 변환·저장·검색하는 노리크라와 엘라스틱서치, 시각화하고 분석하는 키바나를 소개하고, 직접 트위터 스트리밍 API에 연계해 실시간으로 데이터를 집계하는 시스템을 만들어본다.

머신 러닝 알고리즘과 딥러닝 이론을 배우자! 미래를 예측할 수 있다.
수집하고 저장하고 분석한 데이터로부터 미래를 예측하는 기술인 머신 러닝과 딥러닝을 소개한다. 머신 러닝 알고리즘(나이브 베이즈, 단순 퍼셉트론, 서포트 벡터 머신, 회귀 알고리즘, 클러스터링)을 배우고, 파이썬으로 다음 데이터셋을 처리해본다.

· IRIS 데이터 붓꽃 네 종류의 계측 데이터로부터 품종을 예측해본다
· digits 데이터 손으로 쓴 숫자 이미지를 문자로 인식시켜 숫자를 맞춰 본다
· Boston 데이터 주택 가격을 예측해보고 정확도를 더 높이는 방법을 알아 본다

또한, 딥러닝 이론(다항 로지스틱 회귀, 다층 신경망, 합성곱 신경망, 재귀형 신경망)은 머신 러닝과 어떤 차이가 있는지 알아보고, 텐서플로로 실행해본다.

도서목차

지은이의 말
옮긴이의 말
감수자의 말
이 책의 활용법
실습 후기

1장 인공지능과 머신 러닝
__1.1 인공지능이란?
____1.1.1 현재의 요괴 ‘인공지능’
__1.2 BI는 AI 꿈을 꾸는가?
____1.2.1 비즈니스를 뒷받침하는 AI와 머신 러닝 엔지니어
__1.3 지금의 인공지능=지능?
____1.3.1 인공지능이 데이터 분석을 하는 날
__1.4 마무리

2장 데이터 분석 처리를 위한 기반 기술
__2.1 하둡: 대규모 데이터를 처리하는 인프라
____2.1.1 하둡이란?
____2.1.2 맵리듀스 처리
__2.2 하이브: 하둡에서 더욱 쉽게 데이터를 처리
____2.2.1 하이브란?
__2.3 프레스토: 고속 데이터 처리
____2.3.1 프레스토란?
__2.4 스파크: 더 빠른 분산 처리 환경
____2.4.1 스파크란?
__2.5 하둡과 관련된 기타 미들웨어
____2.5.1 하둡 관련 기타 미들웨어
__2.6 다양한 하둡 디스트리뷰션
____2.6.1 하둡 디스트리뷰션이란?
__2.7 BI 도구: 처리한 데이터를 시각화
____2.7.1 BI 도구란?
____2.7.2 펜타호
____2.7.3 제플린
__2.8 마무리

3장 실시간으로 데이터를 분석한다: 데이터에서 현재를 알 수 있는 기술
__3.1 플루언티드
____3.1.1 데이터를 실시간으로 수집한다
__3.2 노리크라
____3.2.1 데이터를 실시간으로 집계한다
__3.3 사례: 트위터 데이터에서 사람 이름을 실시간으로 집계
____3.3.1 실시간으로 사람 이름을 집계해 보자
____3.3.2 루비 환경 설정
____3.3.3 플루언티드 설치
____3.3.4 트위터 스트리밍 API와의 연계
____3.3.5 플루언티드 MeCab 플러그인 작성
____3.3.6 노리크라 설치
____3.3.7 노리크라와 플루언티드 연동
____3.3.8 노리크라에 키워드 집계용 쿼리 등록
____3.3.9 엘라스틱서치와 키바나로 데이터 시각화하기
____3.3.10 노리크라, 플루언티드, 엘라스틱서치와 키바나의 연동
__3.4 마무리

4장 머신 러닝 알고리즘: 데이터로 미래를 보는 기술
__4.1 머신 러닝이란?
____4.1.1 레스토랑 예약으로 머신 러닝을 생각한다
__4.2 머신 러닝 알고리즘
____4.2.1 머신 러닝 알고리즘의 개요
____4.2.2 머신 러닝 알고리즘의 종류
__4.3 나이브 베이즈
____4.3.1 나이브 베이즈의 개요
____4.3.2 나이브 베이즈의 이론
____4.3.3 나이브 베이즈의 구체적인 예
____4.3.4 나이브 베이즈의 구현 방법
____4.3.5 나이브 베이즈의 마무리
__4.4 단층 퍼셉트론
____4.4.1 단층 퍼셉트론이란?
____4.4.2 퍼셉트론의 학습 과정
____4.4.3 퍼셉트론의 구현 방법
____4.4.4 퍼셉트론의 문제점
____4.4.5 퍼셉트론의 마무리
__4.5 온라인 학습
____4.5.1 온라인 학습이란?
____4.5.2 퍼셉트론의 온라인 학습 프로그램
____4.5.3 PA 알고리즘
____4.5.4 온라인 학습의 마무리
__4.6 서포트 벡터 머신
____4.6.1 서포트 벡터 머신이란?
____4.6.2 서포트 벡터 머신의 이론
__4.7 선형 회귀
____4.7.1 회귀 알고리즘이란?
__4.8 자기 회귀
____4.8.1 과거 데이터로 목적 함수를 추정하는 방법
__4.9 클러스터링
____4.9.1 클러스터링이란?
__4.10 맵리듀스와 머신 러닝
____4.10.1 대규모 데이터에 머신 러닝 알고리즘 적용
__4.11 머신 러닝 실습
____4.11.1 파이썬 환경 설치
____4.11.2 IRIS 데이터를 사용한 머신 러닝 예제
____4.11.3 digits 데이터를 사용한 머신 러닝 예제
____4.11.4 Boston 데이터를 사용한 머신 러닝 예제
__4.12 마무리

5장 딥러닝
__5.1 단층 퍼셉트론과 친구들
____5.1.1 단층 퍼셉트론 복습하기
____5.1.2 로지스틱 회귀
____5.1.3 다항 로지스틱 회귀
__5.2 신경망
____5.2.1 단층 퍼셉트론과 신경망의 차이점
____5.2.2 신경망
____5.2.3 유닛
____5.2.4 오차 역전파법
____5.2.5 프로그램 예시
____5.2.6 단층 퍼셉트론, 로지스틱 회귀, 다항 로지스틱 회귀, 신경망
__5.3 합성곱 신경망
____5.3.1 합성곱 신경망이란?
____5.3.2 합성곱층
____5.3.3 풀링층
____5.3.4 다층 신경망
____5.3.5 합성곱 신경망 학습
__5.4 재귀형 신경망
____5.4.1 재귀형 신경망이란?
____5.4.2 재귀형 신경망 학습
__5.5 텐서플로
____5.5.1 텐서플로 설치
____5.5.2 다항 로지스틱 회귀
____5.5.3 다층 신경망
____5.5.4 합성곱 신경망
____5.5.5 속편: 합성곱 신경망
__5.6 마무리

용어집
찾아보기

해시태그

#데이터 #분석을 #위한 #머신 #러닝 #입문

도서 리뷰작성!

평점
답변상태 문의답변 작성자 작성일

도서 문의작성!

배송 - 월요일~토요일 오전9시 이전에 입금 확인 된 주문은 다음날 배송받으실 수 있습니다.
- 토요일 발송분은 오전9시 이전 주문에 한하여 월요일 수령 가능 합니다.
(일부 제작상품 및 재고부족 도서 제외)
- 재고가 부족한 일부 상품의 경우 1~3일 정도 배송이 지연될 수 있습니다.
교환/반품 방법 1:1 문의 글 등록, 고객만족센터 (1544-1356) 전화 후 교환/반품 문의하시면 됩니다.
교환/반품 가능기간 출고 완료 후 7일 이내에 교환/반품/환불이 가능합니다.
교환/반품 비용 고객님 변심에 의한 반품, 환불, 교환 시 택배비는 본인 부담입니다.
교환/반품 불가사유 - 상담원과의 상담 없이 교환 및 반품으로 반송된 물품은 책임지지 않습니다.
- 상품이 훼손된 경우 반품 및 교환, 환불이 불가합니다.
- 고객님 귀책사유로 인해 수거가 지연될 경우에는 반품이 제한됩니다.
서브노트, 스프링 분철 교재 등은 교환이나 반품이 불가합니다.
상품 품절 공급사(출판사) 재고 사정에 의해 품절/지연될 수 있으며, 품절 시 관련 사항에 대해서는 이메일과 문자로
안내해드리겠습니다.
소비자 피해보상
환불지연에 따른 배상
- 상품의 불량에 의한 교환, A/S, 환불, 품질보증 및 피해보상 등에
관한 사항은 소비자분쟁해결 기준 (공정거래위원회고시)에 준하여 처리됨
- 대금환불 및 환불지연에 따른 배상금 지급 조건, 절차등은 전자상거래 등에서의
소비자 보호에 관한 법률에 따라 처리됨